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1. Define a function f : R→ R by

f(x) :=

{
x2, if x ∈ Q
0, otherwise

Show that f ′(0) exists but f ′(x) does not exist for any x 6= 0.

Proof. • We first show that f ′(0) exists. (The term x2 suggests that f ′(0) = 0).

Since f(0) = 0, it suffices to show that

lim
x→0

f(x)

x
= 0.

Let ε > 0, and take δ := ε. For any |x| < δ, if x ∈ Q, then∣∣∣∣f(x)

x

∣∣∣∣ =

∣∣∣∣x2x
∣∣∣∣ = |x| < ε.

If x /∈ Q, then ∣∣∣∣f(x)

x

∣∣∣∣ =

∣∣∣∣0x
∣∣∣∣ = 0 < ε.

This proves that f ′(0) = 0.

• Next we show that for x 6= 0, f ′(x) does not exist. It is easier to show that f is
not continuous at x, hence not differentiable at x. By the sequential criterion
it suffices to exhibit a sequence xn converging to x but f(xn) does not converge
to f(x). We consider two cases.

– x ∈ Q\{0}. In this case, f(x) = x2 6= 0. However, by density of
irrational numbers, there exists a sequence xn /∈ Q so that xn → x. Thus
f(xn) = 0→ 0 6= f(x). Hence f is discontinuous at x.

– x /∈ Q. In this case, f(x) = 0. By density of rational numbers, take
xn ∈ Q so that xn → x. Thus f(xn) = x2n → x2 6= 0, since x 6= 0. Hence f
is discontinuous at x.

To conclude, f ′(x) does not exist at x 6= 0.

2. Suppose f is differentiable on a bounded open interval (a, b).

(a) Show that if f is unbounded on the interval (a, b), then f ′ is also unbounded
on (a, b).
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(b) Does the converse of part (a) hold?

Proof. (a) We prove by contradiction. Suppose f ′ is bounded on (a, b). We have
two different approaches to show that f is bounded on (a, b).

• Method 1: Since f ′ is bounded on (a, b), let M := supx∈(a,b) |f ′(x)| < ∞.
We show that f is Lipschitz continuous. Indeed, given a < x < y < b,
since f is continuous on [x, y] and differentiable on (x, y), by the mean
value theorem, there is some z ∈ (x, y) so that

f(y)− f(x) = f ′(z)(y − x).

But then
|f(y)− f(x)| = |f ′(z)(y − x)| ≤M |y − x|,

showing that f is Lipschitz continuous on (a, b). Then f is in particular
uniformly continuous on (a, b). By the uniform extension theorem, f can be
continuously extended to f̃ : [a, b]→ R so that f̃ is uniformly continuous.
In particular, f̃ is bounded on [a, b]. In particular, f is bounded on (a, b).

• Method 2: Fix an arbitrary c ∈ (a, b). For any x ∈ (c, b), since f is
continuous on [c, x] and differentiable on (c, x), by the mean value theorem,
there is some z ∈ (c, x) so that

f(x)− f(c) = f ′(z)(x− c).

But then

|f(x)− f(c)| = |f ′(z)(x− c)| ≤M |x− c| ≤M(b− a),

thus by the triangle inequality, for any x ∈ (c, b),

|f(x)| ≤ |f(x)− f(c)|+ |f(c)| ≤M(b− a) + |f(c)|.

Similarly, for any x ∈ (a, c), |f(x)| ≤M(b− a) + |f(c)|. Therefore for any
x ∈ (a, b), |f(x)| ≤ M(b− a) + |f(c)|, which is a finite constant. Hence f
is bounded on (a, b).

(b) The converse does not hold. Consider f(x) :=
√
x defined on x ∈ (0, 1). Then

f ′(x) = 1
2
√
x

on (0, 1), which is unbounded. However, 0 < f(x) < 1 on (0, 1),
hence f is bounded.

3. Define a function f : [0, 1]→ R by{
x, if x ∈ Q ∩ [0, 1]

−x, otherwise.

Find the upper and lower integrals of f .
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Proof. We claim that
∫ 1

0
f =

1

2
and

∫ 1

0
f = −1

2
:

For any partition P = {x0 = 0, ..., xN = 1} of [0, 1], we first show that for each
1 ≤ i ≤ N ,

sup
[xi−1,xi]

f = xi

and similarly
inf

[xi−1,xi]
f = −xi

For the former one, first by definition of f we immediately see that f(x) ≤ xi for all
x ∈ [xi−1, xi], and therefore sup[xi−1,xi]

f ≤ xi; On the other hand, fix any ε > 0, by
density theorem of rational numbers, there exists yi ∈ (xi − ε, xi) ∩ Q. Therefore,
xi − ε < f(yi) < xi. Since ε > 0 is arbitrary, we have

sup
[xi−1,xi]

f = xi.

For the latter one the argument is analogous: by definition of f we immediately
see that f(x) ≥ −xi for all x ∈ [xi−1, xi], and therefore inf [xi−1,xi] f ≥ −xi; On the
other hand, fix any ε > 0, by density theorem of irrational numbers, there exists
zi ∈ (xi − ε, xi) ∩ (R−Q). Therefore, −xi < f(zi) < −xi + ε. Since ε > 0 is
arbitrary, we have

inf
[xi−1,xi]

f = −xi.

Therefore, U(f, P ) =
∑N

i=1 xi(xi − xi−1) = U(g, P ) and L(f, P ) =
∑N

i=1(−xi)(xi −
xi−1) = L(h, P ) , where g, h : [0, 1]→ R is given by g(x) = x and h(x) = −x.

Since g, h are continuous, they are Riemann integrable, i.e.
∫ 1

0
g =

∫ 1

0
xdx =

1

2
and∫ 1

0
h =

∫ 1

0
(−x)dx = −1

2
.

Finally, we compute
∫ 1

0
f and

∫ 1

0
f :

∫ 1

0

f = inf
P
U(f, P ) = inf

P
U(g, P ) =

∫ 1

0

g =
1

2∫ 1

0

f = sup
P
L(f, P ) = sup

P
L(h, P ) =

∫ 1

0

h = −1

2

4. Define a function f on [0, 1] by

f(x) :=

{
1, if x = 1

n
, n = 1, 2, . . .

0, otherwise .

Show that f is Riemann integrable and find
∫ 1

0
f .
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Proof. It is reasonable to guess that
∫ 1

0
f = 0. Hence it suffices to show: for any

ε > 0, there exists a partition P such that U(f, P )− L(f, P ) < ε. But it is easy to
see that L(f, P ) = 0 for any partition P . Hence it suffices to show that U(f, P ) < ε,

which also implies that
∫ 1

0
f = 0.

Let ε > 0. Assume ε < 0.1 without loss of generality. Let N be the least integer
such that N > 1

ε
. Note then N ≥ 10. Consider the points 1

k
, k = 1, 2, . . . , N − 1,

and take

δ := min

{
1

N − 2
− 1

N − 1
,

1

N − 1
− ε

2

}
∈
(

0,
2

N(N − 1)

)
.

Consider the partition P given by:

0 = x0 <
ε

2
<

1

N − 1
− δ

100
<

1

N − 1
+

δ

100
<

1

N − 2
− δ

100
<

1

N − 2
+

δ

100

< · · · < 1

2
+

δ

100
< 1− δ

100
< 1 = xn.

Then we can compute

U(f, P ) =
n∑
i=1

(xi − xi−1) sup
x∈[xi−1,xi]

f(x)

= (x1 − x0) sup
x∈[0, ε

2
]

f(x) +
n∑
i=2

(xi − xi−1) sup
x∈[xi−1,xi]

f(x)

≤ ε

2
· 1 + (N − 1) · δ

50
· 1

=
ε

2
+

(N − 1)δ

50

<
ε

2
+

1

25N
< ε.

4


